#P- and $\oplus$P- completeness of counting roots of a sparse polynomial

نویسنده

  • Alexey Milovanov
چکیده

Consider the field F2n . Its elements are presented as polynomials from F2[x] modulo some irreducible polynomial of degree n. This polynomial can be found in time polynomial in n, as well as the matrix that related two representation corresponding to different irreducible polynomials [2]. Therefore, we do not need to specify a choice of the irreducible polynomial speaking about polynomial reductions. Consider the following counting problem (SparcePolynomialRoots): given n and a polynomial from F2n[x], find the number of its roots in F2n . The polynomial is given in a sparse representation, i.e., as a list of coefficients and degrees. The size of input is the total bit size of all this information (each coefficient takes n bits).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near NP-Completeness for Detecting p-adic Rational Roots in One Variable

We show that deciding whether a sparse univariate polynomial has a p-adic rational root can be done in NP for most inputs. We also prove a polynomial-time upper bound for trinomials with suitably generic p-adic Newton polygon. We thus improve the best previous complexity upper bound of EXPTIME. We also prove an unconditional complexity lower bound of NP-hardness with respect to randomized reduc...

متن کامل

Counting Tropically Degenerate Valuations and p-adic Approaches to the Hardness of the Permanent

The Shub-Smale τ -Conjecture is a hitherto unproven statement (on integer roots of polynomials) whose truth implies both a variant of P 6=NP (for the BSS model overC) and the hardness of the permanent. We give alternative conjectures, some potentially easier to prove, whose truth still implies the hardness of the permanent. Along the way, we discuss new upper bounds on the number of p-adic valu...

متن کامل

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

Numerical Computation of Polynomial Roots Using MPSolve Version 2.2

We describe the implementation and the use of the package MPSolve (Multiprecision Polynomial Solver) for the approximation of the roots of a univariate polynomial p(x) = ∑n i=0 aix . The package relies on an algorithm, based on simultaneous approximation techniques, that generates a sequence A1 ⊃ A2 ⊃ . . . ⊃ Ak of nested sets containing the root neighborhood of p(x) (defined by the precision o...

متن کامل

Randomization, Sums of Squares, and Faster Real Root Counting for Tetranomials and Beyond

Suppose f is a real univariate polynomial of degree D with exactly 4 monomial terms. We present an algorithm, with complexity polynomial in logD on average (relative to the stable log-uniform measure), for counting the number of real roots of f . The best previous algorithms had complexity super-linear in D. We also discuss connections to sums of squares and A-discriminants, including explicit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.07564  شماره 

صفحات  -

تاریخ انتشار 2016